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Abstract. The electronic structure and optical properties of ZnO wurtzite quantum wires with radius
R ≥ 3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole
effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential
method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark
exciton effect when the radius R of the ZnO quantum wires is in the range of [3, 19.1] nm (dark range in our
model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison.
The dark range becomes smaller when the |∆so| is larger, which also happens in the quantum-dot systems.
The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.

PACS. 73.21.Hb Quantum wires – 78.67.Lt Quantum wires

1 Introduction

Low dimensional systems such as semiconductor quantum
dots and quantum wires have fascinating and technolog-
ically useful optical and electric properties. Studies on
these systems advance our knowledge on low dimensional
physics and chemistry. Semiconductor quantum wires ex-
hibit novel electric and optical properties owing to their
unique structural one-dimensionality and possible quan-
tum confinement effects in two dimensions. Quantum
wires have been evaluated for potential applications as
laser [1–4], light-emitting diodes [5], and photodetec-
tors [6–8].

Nowadays the methods to synthesize quantum wires
have been improved. ZnO wurtzite quantum wires
in a large range of radius are synthesized by dif-
ferent methods [9,11–17] and whose shape can also
be controlled [11]. Their temperature dependent PL
spectra [13,18], photomodulated transmittance spec-
troscopy [19], size-dependent surface luminescence [20]
and Raman spectrum [9] are measured. Recently much at-
tention has been paid to the linear polarized optical prop-
erty of quantum wires. Linear polarized emissions from
quantum wires are observed and explained by dielectric
effect [22], or quantum confinement effect [23,24]. Actu-
ally, ZnO wurtzite single crystal bulk material [25] also
have linear polarized emissions.
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The electronic structures of nanowires with zinc-blende
structure have been studied in the framework of six-
band effective-mass approximation [26]. In this paper, we
expand the former model to nanowires of the wurtzite
structure, and apply the new model to investigate the elec-
tronic structure and optical properties of wurtzite quan-
tum wires. The remainder of this paper is organized as
follows. In Section 2 we give the form of the Hamiltonian.
Our numerical results and discussions are given in Sec-
tion 3. Finally, we draw a brief conclusion in Section 4.

2 Model and calculation

There were few energy band calculations for hexagonal
ZnO, for example the empirical pseudopotential calcula-
tion [27] and the self-consistent pseudopotential calcula-
tion [28]. We represent the form factor of the atomic pseu-
dopotential with a continuous function of the wave vec-
tor q by the Cohen’s formula [29],

V (q) =
v1

(
q2 − v2

)

exp [v3 (q2 − v4)] + 1
, (1)

where the unit of q is au, and the unit of V (q) is Ry. There
are 4 parameters v1 − v4 for the Zn atom, and 4 parame-
ters for the O atom. By comparing the calculated energy
bands with previous theoretical results [27,28] and exper-
iments, we determined the 8 pseudopotential parameters
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Table 1. Atom pseudopotential parameters.

υ1 υ2 υ3 υ4 υ1 υ2 υ3 υ4

Zn 0.11003 1.79208 0.80055 4.25370 O 0.19597 4.90951 1.24475 3.60095

Table 2. ZnO effective-mass parameters of hole.

L M N R S T Q

5.62 0.28 0.435 5.34 0.416 6.22 3.22

for ZnO, which are listed in Table 1. The hole effective-
mass Hamiltonian for wurtzite semiconductors in the case
of zero spin-orbital coupling is given by [30]

see equation (2) above

where the valence band basis functions are X-like, Y -like
(Γ6) and Z-like (Γ1) functions, respectively, L, M , · · · ,
S, T are effective-mass parameters. ∆c is the crys-
tal field splitting energy. By comparing the valence
bands near the top calculated by the effective-mass
Hamiltonian (2) and by the empirical pseudopotential
method, we determined uniquely the effective-mass pa-
rameters in Hamiltonian (2), as shown in Table 2 for ZnO.

Hereafter we assume that the wire is along the z axis of
the crystal structure, and the cylinder has a sharp bound-
ary, so that the wave functions at the boundary are zero.
The sharp boundary is only suitable for thicker wires, so
we only calculate the electronic structure and optical prop-
erties of wurtzite quantum wires with radius R ≥ 3 nm. In
order to calculate in the cylindrical coordinate, we trans-
form the hole Hamiltonian (2) from the basis functions X ,
Y , and Z to the 1

√
2 (X + iY ), 1/
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where
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2
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z,

P3 = Sp−p+ + Tp2
z + 2m0∆c,

F =
L − M − R

4
p2
+ +
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4
p2
−, (4)

G =
1√
2
Qp−pz,

p± = px ± ipy.

The spin-orbital coupling (SOC) Hamiltonian is written
as [26],
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Here, we take the basis functions as 1/
√

2 (X + iY ) ↑,
1/

√
2 (X − iY ) ↑, Z ↑, 1/

√
2 (X + iY ) ↓, 1/

√
2 (X − iY ) ↓

and Z ↓. The eigenvalues of the SOC Hamiltonian Hso are
3λ and 0, the latter is taken as the energy origin. We make
the cylindrical symmetry approximation for the valence
bands, i.e. assume that the coefficient of the p2

+ term in F
of equation (4) is zero, L − M − R = 0, which is verified
from Table 2.

In the cylindrical symmetry approximation, we expand
the wave function of the hole state in Bessel functions,
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(7)
where J = L+1/2 is the total azimuthal angular momen-
tum, and AL,n is the normalization constant,

AL,n =
1√

πRJL+1 (αL
n)

, (8)

αL
n = kL

n R is the nth zero of the Bessel function JL(x), R
is the radius of the cylinder, and k is the wave vector along
the z direction. In the cylindrical symmetry, the system
has the conserved quantum number k and J , the total
azimuthal angular momentum. Therefore the summation
in equation (7) is only over n. In calculating the matrix
elements of the Hamiltonian equation (3) we can use the
property of the operators p±,

p±JL

(
kL

nr
)
eiLθ = ∓�

i
kL

n JL±1

(
kL

n r
)
ei(L±1)θ. (9)



J.B. Xia and X.W. Zhang: Electronic structure of ZnO wurtzite quantum wires 417

The electron Hamiltonian is

He0 =
1

2m∗
x

p−p+ +
1

2m∗
z

p2
z + E′

g, (10)

where E′
g = Eg when ∆so > 0 and E′

g = Eg − ∆so when
∆so < 0. We take the basis functions as S ↑ and S ↓, S
is the Bloch state of conduction-band bottom. The wave
function of the electron state is expanded in Bessel func-
tions,

φe
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(11)
We also calculate the linear polarization factor of the
wires, and assume that the light wave propagates along
the y direction. We do not include the electron-hole in-
teraction in our calculations as our approach is a single-
particle approach. The linear polarization factor is affected
by the quantum confinement effect and the dielectric ef-
fect. At first we taking into account only the quantum
confinement effect. As 〈S|Pt|X〉 = 〈S|Pt|Y 〉 = 〈S|Pt|Z〉
(S, X, Y, Z are the Bloch states and Pt is the optical tran-
sition operator), the intensities of the optical transitions
are proportional to the overlap of the envelop functions of
electron and hole states. That is to say, with the optical
transition between a given electron state and a given hole
state, the intensities of z and x polarized transitions are
proportional to
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(13)
where s denotes spin-up ↑ or spin-down ↓, bL,k,n,s, cL,k,n,s,
dL,k,n,s and eL,k,n,s are given in equations (7) and (11),
respectively.

For the wires, the dielectric effect vanishes in the z di-
rection, but remains in the perpendicular directions. So
the z polarized transition is not affected, but the x polar-
ized transition is decreased [22], that is to say

I ′z = Iz , (14a)

I ′x =
Ix

W
, (14b)

W =
(εZnO + ε0)2 + 2ε2

0

6ε2
0

> 1, (14c)

where εZnO and ε0 are the dielectric constants in and out-
side the wire. Then the linear polarization factor is calcu-
lated approximately by

P = (I ′z − I ′x)/(I ′z + I ′x) = (IzW − Ix)/(IzW + Ix), (15)

where Iz and Ix are given by equations (12) and (13).
Considering the temperature effect, we multiply the
Boltzmann distribution factor to each state, and sum up
all contributions to the intensities.

Fig. 1. Electron states (all J) of ZnO quantum wire with
radius of R = 3 nm as functions of k.

3 Results and discussions

We calculated the electronic structure and optical proper-
ties of ZnO wurtzite quantum wires with radius R ≥ 3 nm.
Except the effective-mass parameters in Hamiltonian (2)
shown in Table 2, other parameters used in this paper
are taken as: the electron effective masses perpendicular
to and along the c axis, m∗

x = 0.3m0 and m∗
z = 0.28m0,

respectively. The dielectric constant εZnO = 8.331 [31],
the band gap Eg = 3.37 eV [9,10], the crystal field split-
ting energy ∆c = 0.03942 eV and the spin-orbit splitting
energy ∆so = −0.00352 eV [31,35]. The unit of energy is

ε0 =
1

2m0

(
�

R

)2

. (16)

3.1 Electronic structure

The electron states (all J) of ZnO quantum wires with ra-
dius of R = 3 nm as functions of k are shown in Figure 1.
The symbol of each energy level represents the main com-
ponents of it’s wave function. For example, (1, 0) ↑ means
that the state consists mainly of the n = 1, L = 0 state of
the effective-mass envelope function multiplied with the S
Bloch state of the conduction-band bottom and the spin-
up state. We see that the electron states are degenerate.
For L = 0, they are two-fold degenerate with spin-up and
spin-down states. For L �= 0, they are four-fold degener-
ate with ±L and spin-up, spin-down states. The energy
levels increase with increasing k as quadratic terms of k,
due to the quadratic terms of pz in equation (4). The hole
states of ZnO quantum wires with radius of R = 3 nm and
J = 1/2 as functions of k are shown in Figure 2. The hole
states of ZnO quantum wires with radius of R = 3 nm and
J = 3/2 as functions of k are shown in Figure 3. The sym-
bol of each energy level represents the main components
of it’s wave function. For example, (1, 0)X+ ↑ means that
the state consists mainly of the n = 1, L = 0 state of
the effective-mass envelope function multiplied with the
1/

√
2 (X + iY ) Bloch state of the valence-band top and
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Fig. 2. Hole states of ZnO quantum wire with radius of
R = 3 nm and J = 1/2 as functions of k.

the spin-up state. We see that most of the energy levels
decrease as k increases, few of the energy levels increase
at first, due to the coupling of the states, then decrease
as k increases. The levels of the states with Z Bloch state
decrease more quickly than the levels of the states with
1/

√
2 (X + iY ) and 1/

√
2 (X − iY ) Bloch states. This is

because that the coefficients of the p2
z terms in equation (4)

of the two kinds of basic states Z and X , Y are different,
which are T and N , respectively, and T is much greater
than N as shown in Table 2. This is similar to the light
and heavy hole effect. It is noticed that the hole states
with ±J are degenerate, so the hole states in Figures 2
and 3 are all two-fold degenerate. The wave functions of
the −J hole states are those of the +J states denoted in
Figures 2 and 3 with the reversed spin states. The de-
generacy of states with +J and −J is known as Kramers
degeneracy.

The electron states (all J) of ZnO quantum wires at
k = 0 as functions of R are shown in Figure 4a. We see
that when R is larger than 20 nm, all the levels come down
to a same value, i.e. E′

g given in equation (10), that means
that the quantum confinement effect vanishes. The band
gap of ZnO quantum wires as a function of R is shown in
Figure 4b. We define the band gap of ZnO quantum wires
as the separation between the ground electron and hole
subband states at k = 0. We see that it is much larger
than Eg = 3.37 eV when R is small, due to quantum
confinement effect, and is nearly 3.37 eV when R is larger
than 20 nm.

The hole states (J = 1/2, 3/2) of ZnO quantum wires
at k = 0 as functions of R are shown in Figure 4c. Be-
cause the highest energy level of valence-band decrease

Fig. 3. Hole states of ZnO quantum wire with radius of
R = 3 nm and J = 3/2 as functions of k.

Fig. 4. (a) Electron states (all J) of ZnO quantum wires with
k = 0 as functions of R. (b) Band gap of ZnO quantum wires as
a function of R. (c) Hole states (J = 1/2, 3/2) of ZnO quantum
wires with k = 0 as functions of R.

with increasing k (see Fig. 2), the highest state at k = 0
in Figure 4c is the ground state of valence-band. The en-
ergy is in the unit of ε0. We see that the levels of the
states which have dominating Z Bloch state components
(e.g. (1, 0)Z ↑) decrease very quickly as R increases, due
to ∆c > 0. The levels of the states which have dominat-
ing spin-orbit split-off state components (e.g. (1, 0)X+ ↓)
increase as R increases, due to ∆so < 0. The levels
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of the states which have dominating spin-orbit split-off
state components and also dominating heavy-hole compo-
nents (e.g. (1, 1)X− ↑ +(1,−1)X+ ↑) increase slowly as
R increases. It is noticed that the wave function of the
ground state changes as R increases. When R is larger
than 19.1 nm, the highest state is (1, 0)X+ ↓. When
R is in the range of [3, 19.1] nm, the highest state is
(1, 1)X− ↑ +(1,−1)X+ ↑, a state with L = ±1, which
is different from L = 0 of the lowest state of conduction-
band. At low temperature, the electron and hole distribute
in the lowest state of conduction-band and the highest
state of valence-band, respectively. So when R is in the
range of [3, 19.1] nm, which we named as the dark range
(restricted by the range of radius which can be calcu-
lated in our model), the electron and hole can not be
recombined directly, that means that there is a dark ex-
citon effect. The crossing of the levels (1, 0)X+ ↓ and
(1, 1)X− ↑ +(1,−1)X+ ↑ is because that the former in-
creases more quickly than the latter as R increases. When
the |∆so| is increased, the highest two energy levels all
increase more quickly, and the crossing point moves to
smaller radius.

The dark exciton effect is due to the wurtzite crystal
structure and the quantum confinement effect, which leads
to a new order of the hole energy levels different from the
order in bulk material. We also calculate the dark ranges
of CdS, CdSe wurtzite quantum wires. The effective-mass
parameters are cited from Xia et al. [33]. The splitting
energies are ∆so = 70 meV, ∆c = 24 meV for CdS [34],
and ∆so = 418 meV, ∆c = 40 meV for CdSe [35]. The cal-
culated dark ranges in our model of CdS, CdSe wurtzite
quantum wires are [3, 6.2] nm, [3, 4.0] nm, respectively,
as shown in Figure 5. We see that all the levels decrease
as R increases, because ∆c > 0 and ∆so > 0. As R in-
creases, the hole ground state changes from (1,−1)X+ ↑
+(1, 1)X− ↑ to (1, 0)X+ ↑ which is a heavy-hole state, as
shown in Figure 5. We see that the dark range becomes
smaller, from CdS to CdSe, due to the similar reason to
the ZnO case as the |∆so| of CdS is smaller than that of
CdSe. Xia et al. [33,34] calculated out that CdS quan-
tum dots with radius smaller 6.9 nm which was named as
the critical radius, and CdSe quantum dots with radius of
R < 3 nm have dark exciton effect. The critical radius of
CdS quantum dots is larger than that of CdSe quantum
dots, due to the similar reason to the wire case (see Fig. 5)
as the |∆so| of CdS is smaller than that of CdSe.

So there is a dark exciton effect in the wurtzite quan-
tum wires and dots, and the dark range becomes smaller
with the |∆so| increasing, i.e. becomes larger with the
|∆so| decreasing.

3.2 Linear polarization

We calculate the linear polarization factor of the wire,
taking into account the quantum confinement effect
and the dielectric effect. The dielectric constants are
εZnO = 8.331 [31] in the wire, and ε0 = 1 in the vacuum,
then W = 14.8446 (see Eq. (14)). The linear polariza-
tion factors of ZnO quantum wires as functions of R are

Fig. 5. Hole states (J = 1/2, 3/2) of CdS and CdSe quantum
wires with k = 0 as functions of R. (a) CdS; (b) CdSe.

Fig. 6. (a) Linear polarization factors of ZnO quantum wires
as functions of R. (b) Virtual linear polarization factors of ZnO
quantum wires taking into account only the quantum confine-
ment effect as functions of R.

shown in Figure 6a. We see that the linear polarization
factor is dependent on the radius and the temperature,
and decreases as R increases. It is noticed that at higher
temperature, the linear polarization factor is larger, which
is opposite to the CdSe ellipsoid case [24]. Actually, the
virtual linear polarization factors taking into account only
the quantum confinement effect are mostly negative, as
shown in Figure 6b, and the absolute value of the linear
polarization factor at higher temperature is smaller. The
dielectric effect corrects this virtual result to the real re-
sult by the factor W in equation (15), and the relative
position of the polarization factors at different tempera-
ture does not change.

4 Conclusion

The electronic structure and optical properties of ZnO
wurtzite quantum wires with radius R ≥ 3 nm are studied
in the framework of six-band effective-mass envelope func-
tion theory. The hole effective-mass parameters of ZnO
wurtzite material are calculated by the empirical pseu-
dopotential method. It is found that the electron states
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are either two-fold or four-fold degenerate. There is a dark
exciton effect in the wurtzite quantum wires and dots, due
to the wurtzite crystal structure and the quantum confine-
ment effect, which leads to a new order of the hole energy
levels different from the order in bulk material. The dark
ranges in our model of the ZnO, CdS and CdSe quantum
wires are [3, 19.1] nm, [3, 6.2] nm and [3, 4] nm, respec-
tively. The dark range becomes smaller when the |∆so| is
larger, which also happens in the quantum-dot systems.
The linear polarization factor of ZnO quantum wires is
larger when the temperature is higher.

This work is supported by the National Natural Science Foun-
dation of China No. 90301007, 60521001 and the special funds
for Major State Basic Research Project No. G001CB3095 of
China.
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